

Introduction

couchdb is Python package for working with CouchDB [http://couchdb.org/] from Python code.
It consists of the following main modules:

	couchdb.client: This is the client library for interfacing CouchDB
servers. If you don’t know where to start, this is likely to be what you’re
looking for.

	couchdb.mapping: This module provides advanced mapping between CouchDB
JSON documents and Python objects.

Additionally, the couchdb.view module implements a view server for
views written in Python.

There may also be more information on the project website [https://github.com/djc/couchdb-python].

Documentation

	1. Getting started with couchdb-python

	2. Writing views in Python

	3. Basic CouchDB API: couchdb.client
	3.1. Server

	3.2. Database

	3.3. Document

	3.4. ViewResults

	3.5. Row

	4. Mapping CouchDB documents to Python objects: couchdb.mapping
	4.1. Field types

	5. Changes
	5.1. Version 1.2 (2018-02-09)

	5.2. Version 1.1 (2016-08-05)

	5.3. Version 1.0.1 (2016-03-12)

	5.4. Version 1.0 (2014-11-16)

	5.5. Version 0.10 (2014-07-15)

	5.6. Version 0.9 (2013-04-25)

	5.7. Version 0.8 (Aug 13, 2010)

	5.8. Version 0.7.0 (Apr 15, 2010)

	5.9. Version 0.6.1 (Dec 14, 2009)

	5.10. Version 0.6 (Jul 2, 2009)

	5.11. Version 0.5 (Nov 29, 2008)

	5.12. Version 0.4 (Jun 28, 2008)

	5.13. Version 0.3 (Feb 6, 2008)

	5.14. Version 0.2 (Nov 21, 2007)

	5.15. Version 0.1 (Sep 23, 2007)

Indices and tables

	Index

	Module Index

	Search Page

1. Getting started with couchdb-python

Some snippets of code to get you started with writing code against CouchDB.

Starting off:

>>> import couchdb
>>> couch = couchdb.Server()

This gets you a Server object, representing a CouchDB server. By default, it
assumes CouchDB is running on localhost:5984. If your CouchDB server is
running elsewhere, set it up like this:

>>> couch = couchdb.Server('http://example.com:5984/')

You can also pass authentication credentials and/or use SSL:

>>> couch = couchdb.Server('https://username:password@host:port/')

You can create a new database from Python, or use an existing database:

>>> db = couch.create('test') # newly created
>>> db = couch['mydb'] # existing

After selecting a database, create a document and insert it into the db:

>>> doc = {'foo': 'bar'}
>>> db.save(doc)
('e0658cab843b59e63c8779a9a5000b01', '1-4c6114c65e295552ab1019e2b046b10e')
>>> doc
{'_rev': '1-4c6114c65e295552ab1019e2b046b10e', 'foo': 'bar', '_id': 'e0658cab843b59e63c8779a9a5000b01'}

The save() method returns the ID and “rev” for the newly created document.
You can also set your own ID by including an _id item in the document.

Getting the document out again is easy:

>>> db['e0658cab843b59e63c8779a9a5000b01']
<Document 'e0658cab843b59e63c8779a9a5000b01'@'1-4c6114c65e295552ab1019e2b046b10e' {'foo': 'bar'}>

To find all your documents, simply iterate over the database:

>>> for id in db:
... print id
...
'e0658cab843b59e63c8779a9a5000b01'

Now we can clean up the test document and database we created:

>>> db.delete(doc)
>>> couch.delete('test')

2. Writing views in Python

The couchdb-python package comes with a view server to allow you to write
views in Python instead of JavaScript. When couchdb-python is installed, it
will install a script called couchpy that runs the view server. To enable
this for your CouchDB server, add the following section to local.ini:

[query_servers]
python=/usr/bin/couchpy

After restarting CouchDB, the Futon view editor should show python in
the language pull-down menu. Here’s some sample view code to get you started:

def fun(doc):
 if 'date' in doc:
 yield doc['date'], doc

Note that the map function uses the Python yield keyword to emit
values, where JavaScript views use an emit() function.

3. Basic CouchDB API: couchdb.client

Python client API for CouchDB.

>>> server = Server()
>>> db = server.create('python-tests')
>>> doc_id, doc_rev = db.save({'type': 'Person', 'name': 'John Doe'})
>>> doc = db[doc_id]
>>> doc['type']
u'Person'
>>> doc['name']
u'John Doe'
>>> del db[doc.id]
>>> doc.id in db
False

>>> del server['python-tests']

3.1. Server

	
class couchdb.client.Server(url='http://localhost:5984/', full_commit=True, session=None)

	Representation of a CouchDB server.

>>> server = Server() # connects to the local_server
>>> remote_server = Server('http://example.com:5984/')
>>> secure_remote_server = Server('https://username:password@example.com:5984/')

This class behaves like a dictionary of databases. For example, to get a
list of database names on the server, you can simply iterate over the
server object.

New databases can be created using the create method:

>>> db = server.create('python-tests')
>>> db
<Database 'python-tests'>

You can access existing databases using item access, specifying the database
name as the key:

>>> db = server['python-tests']
>>> db.name
'python-tests'

Databases can be deleted using a del statement:

>>> del server['python-tests']

	
add_user(name, password, roles=None)

	Add regular user in authentication database.

	Parameters

	
	name – name of regular user, normally user id

	password – password of regular user

	roles – roles of regular user

	Returns

	(id, rev) tuple of the registered user

	Return type

	tuple

	
config()

	The configuration of the CouchDB server.

The configuration is represented as a nested dictionary of sections and
options from the configuration files of the server, or the default
values for options that are not explicitly configured.

	Return type

	dict

	
create(name)

	Create a new database with the given name.

	Parameters

	name – the name of the database

	Returns

	a Database object representing the created database

	Return type

	Database

	Raises

	PreconditionFailed – if a database with that name already exists

	
delete(name)

	Delete the database with the specified name.

	Parameters

	name – the name of the database

	Raises

	ResourceNotFound – if a database with that name does not exist

	Since

	0.6

	
login(name, password)

	Login regular user in couch db

	Parameters

	
	name – name of regular user, normally user id

	password – password of regular user

	Returns

	authentication token

	
logout(token)

	Logout regular user in couch db

	Parameters

	token – token of login user

	Returns

	True if successfully logout

	Return type

	bool

	
remove_user(name)

	Remove regular user in authentication database.

	Parameters

	name – name of regular user, normally user id

	
replicate(source, target, **options)

	Replicate changes from the source database to the target database.

	Parameters

	
	source – URL of the source database

	target – URL of the target database

	options – optional replication args, e.g. continuous=True

	
stats(name=None)

	Server statistics.

	Parameters

	name – name of single statistic, e.g. httpd/requests
(None – return all statistics)

	
tasks()

	A list of tasks currently active on the server.

	
uuids(count=None)

	Retrieve a batch of uuids

	Parameters

	count – a number of uuids to fetch
(None – get as many as the server sends)

	Returns

	a list of uuids

	
verify_token(token)

	Verify user token

	Parameters

	token – authentication token

	Returns

	True if authenticated ok

	Return type

	bool

	
version()

	The version string of the CouchDB server.

Note that this results in a request being made, and can also be used
to check for the availability of the server.

	Return type

	unicode

	
version_info()

	The version of the CouchDB server as a tuple of ints.

Note that this results in a request being made only at the first call.
Afterwards the result will be cached.

	Return type

	tuple(int, int, int)

3.2. Database

	
class couchdb.client.Database(url, name=None, session=None)

	Representation of a database on a CouchDB server.

>>> server = Server()
>>> db = server.create('python-tests')

New documents can be added to the database using the save() method:

>>> doc_id, doc_rev = db.save({'type': 'Person', 'name': 'John Doe'})

This class provides a dictionary-like interface to databases: documents are
retrieved by their ID using item access

>>> doc = db[doc_id]
>>> doc
<Document u'...'@... {...}>

Documents are represented as instances of the Row class, which is
basically just a normal dictionary with the additional attributes id and
rev:

>>> doc.id, doc.rev
(u'...', ...)
>>> doc['type']
u'Person'
>>> doc['name']
u'John Doe'

To update an existing document, you use item access, too:

>>> doc['name'] = 'Mary Jane'
>>> db[doc.id] = doc

The save() method creates a document with a random ID generated by
CouchDB (which is not recommended). If you want to explicitly specify the
ID, you’d use item access just as with updating:

>>> db['JohnDoe'] = {'type': 'person', 'name': 'John Doe'}

>>> 'JohnDoe' in db
True
>>> len(db)
2

>>> del server['python-tests']

If you need to connect to a database with an unverified or self-signed SSL
certificate, you can re-initialize your ConnectionPool as follows (only
applicable for Python 2.7.9+):

>>> db.resource.session.disable_ssl_verification()

	
changes(**opts)

	Retrieve a changes feed from the database.

	Parameters

	opts – optional query string parameters

	Returns

	an iterable over change notification dicts

	
cleanup()

	Clean up old design document indexes.

Remove all unused index files from the database storage area.

	Returns

	a boolean to indicate successful cleanup initiation

	Return type

	bool

	
commit()

	If the server is configured to delay commits, or previous requests
used the special X-Couch-Full-Commit: false header to disable
immediate commits, this method can be used to ensure that any
non-committed changes are committed to physical storage.

	
compact(ddoc=None)

	Compact the database or a design document’s index.

Without an argument, this will try to prune all old revisions from the
database. With an argument, it will compact the index cache for all
views in the design document specified.

	Returns

	a boolean to indicate whether the compaction was initiated
successfully

	Return type

	bool

	
copy(src, dest)

	Copy the given document to create a new document.

	Parameters

	
	src – the ID of the document to copy, or a dictionary or
Document object representing the source document.

	dest – either the destination document ID as string, or a
dictionary or Document instance of the document that
should be overwritten.

	Returns

	the new revision of the destination document

	Return type

	str

	Since

	0.6

	
create(data)

	Create a new document in the database with a random ID that is
generated by the server.

Note that it is generally better to avoid the create() method and
instead generate document IDs on the client side. This is due to the
fact that the underlying HTTP POST method is not idempotent, and
an automatic retry due to a problem somewhere on the networking stack
may cause multiple documents being created in the database.

To avoid such problems you can generate a UUID on the client side.
Python (since version 2.5) comes with a uuid module that can be
used for this:

from uuid import uuid4
doc_id = uuid4().hex
db[doc_id] = {'type': 'person', 'name': 'John Doe'}

	Parameters

	data – the data to store in the document

	Returns

	the ID of the created document

	Return type

	unicode

	
delete(doc)

	Delete the given document from the database.

Use this method in preference over __del__ to ensure you’re
deleting the revision that you had previously retrieved. In the case
the document has been updated since it was retrieved, this method will
raise a ResourceConflict exception.

>>> server = Server()
>>> db = server.create('python-tests')

>>> doc = dict(type='Person', name='John Doe')
>>> db['johndoe'] = doc
>>> doc2 = db['johndoe']
>>> doc2['age'] = 42
>>> db['johndoe'] = doc2
>>> db.delete(doc)
Traceback (most recent call last):
 ...
ResourceConflict: (u'conflict', u'Document update conflict.')

>>> del server['python-tests']

	Parameters

	doc – a dictionary or Document object holding the document data

	Raises

	ResourceConflict – if the document was updated in the database

	Since

	0.4.1

	
delete_attachment(doc, filename)

	Delete the specified attachment.

Note that the provided doc is required to have a _rev field.
Thus, if the doc is based on a view row, the view row would need to
include the _rev field.

	Parameters

	
	doc – the dictionary or Document object representing the
document that the attachment belongs to

	filename – the name of the attachment file

	Since

	0.4.1

	
explain(mango_query)

	Explain a mango find-query.

Note: only available for CouchDB version >= 2.0.0

	More information on the mango_query structure can be found here:

	http://docs.couchdb.org/en/master/api/database/find.html#db-explain

>>> server = Server()
>>> db = server.create('python-tests')
>>> db['johndoe'] = dict(type='Person', name='John Doe')
>>> db['maryjane'] = dict(type='Person', name='Mary Jane')
>>> db['gotham'] = dict(type='City', name='Gotham City')
>>> mango = {'selector': {'type': 'Person'}, 'fields': ['name']}
>>> db.explain(mango)
{...}
>>> del server['python-tests']

	Parameters

	mango_query – a dict describing criteria used to select
documents

	Returns

	the query results as a list of Document (or whatever
wrapper returns)

	Return type

	dict

	
find(mango_query, wrapper=None)

	Execute a mango find-query against the database.

Note: only available for CouchDB version >= 2.0.0

	More information on the mango_query structure can be found here:

	http://docs.couchdb.org/en/master/api/database/find.html#find-selectors

>>> server = Server()
>>> db = server.create('python-tests')
>>> db['johndoe'] = dict(type='Person', name='John Doe')
>>> db['maryjane'] = dict(type='Person', name='Mary Jane')
>>> db['gotham'] = dict(type='City', name='Gotham City')
>>> mango = {'selector': {'type': 'Person'},
... 'fields': ['name'],
... 'sort':[{'name': 'asc'}]}
>>> for row in db.find(mango):
... print(row['name'])
John Doe
Mary Jane
>>> del server['python-tests']

	Parameters

	
	mango_query – a dictionary describing criteria used to select
documents

	wrapper – an optional callable that should be used to wrap the
resulting documents

	Returns

	the query results as a list of Document (or whatever wrapper returns)

	
get(id, default=None, **options)

	Return the document with the specified ID.

	Parameters

	
	id – the document ID

	default – the default value to return when the document is not
found

	Returns

	a Row object representing the requested document, or None
if no document with the ID was found

	Return type

	Document

	
get_attachment(id_or_doc, filename, default=None)

	Return an attachment from the specified doc id and filename.

	Parameters

	
	id_or_doc – either a document ID or a dictionary or Document
object representing the document that the attachment
belongs to

	filename – the name of the attachment file

	default – default value to return when the document or attachment
is not found

	Returns

	a file-like object with read and close methods, or the value
of the default argument if the attachment is not found

	Since

	0.4.1

	
index()

	Get an object to manage the database indexes.

	Returns

	an Indexes object to manage the databes indexes

	Return type

	Indexes

	
info(ddoc=None)

	Return information about the database or design document as a
dictionary.

Without an argument, returns database information. With an argument,
return information for the given design document.

The returned dictionary exactly corresponds to the JSON response to
a GET request on the database or design document’s info URI.

	Returns

	a dictionary of database properties

	Return type

	dict

	Since

	0.4

	
iterview(name, batch, wrapper=None, **options)

	Iterate the rows in a view, fetching rows in batches and yielding
one row at a time.

Since the view’s rows are fetched in batches any rows emitted for
documents added, changed or deleted between requests may be missed or
repeated.

	Parameters

	
	name – the name of the view; for custom views, use the format
design_docid/viewname, that is, the document ID of the
design document and the name of the view, separated by a
slash.

	batch – number of rows to fetch per HTTP request.

	wrapper – an optional callable that should be used to wrap the
result rows

	options – optional query string parameters

	Returns

	row generator

	
list(name, view, **options)

	Format a view using a ‘list’ function.

	Parameters

	
	name – the name of the list function in the format
designdoc/listname

	view – the name of the view in the format designdoc/viewname

	options – optional query string parameters

	Returns

	(headers, body) tuple, where headers is a dict of headers
returned from the list function and body is a readable
file-like instance

	
name

	The name of the database.

Note that this may require a request to the server unless the name has
already been cached by the info() method.

	Return type

	basestring

	
purge(docs)

	Perform purging (complete removing) of the given documents.

Uses a single HTTP request to purge all given documents. Purged
documents do not leave any meta-data in the storage and are not
replicated.

	
put_attachment(doc, content, filename=None, content_type=None)

	Create or replace an attachment.

Note that the provided doc is required to have a _rev field. Thus,
if the doc is based on a view row, the view row would need to include
the _rev field.

	Parameters

	
	doc – the dictionary or Document object representing the
document that the attachment should be added to

	content – the content to upload, either a file-like object or
a string

	filename – the name of the attachment file; if omitted, this
function tries to get the filename from the file-like
object passed as the content argument value

	content_type – content type of the attachment; if omitted, the
MIME type is guessed based on the file name
extension

	Since

	0.4.1

	
query(map_fun, reduce_fun=None, language='javascript', wrapper=None, **options)

	Execute an ad-hoc query (a “temp view”) against the database.

Note: not supported for CouchDB version >= 2.0.0

>>> server = Server()
>>> db = server.create('python-tests')
>>> db['johndoe'] = dict(type='Person', name='John Doe')
>>> db['maryjane'] = dict(type='Person', name='Mary Jane')
>>> db['gotham'] = dict(type='City', name='Gotham City')
>>> map_fun = '''function(doc) {
... if (doc.type == 'Person')
... emit(doc.name, null);
... }'''
>>> for row in db.query(map_fun):
... print(row.key)
John Doe
Mary Jane

>>> for row in db.query(map_fun, descending=True):
... print(row.key)
Mary Jane
John Doe

>>> for row in db.query(map_fun, key='John Doe'):
... print(row.key)
John Doe

>>> del server['python-tests']

	Parameters

	
	map_fun – the code of the map function

	reduce_fun – the code of the reduce function (optional)

	language – the language of the functions, to determine which view
server to use

	wrapper – an optional callable that should be used to wrap the
result rows

	options – optional query string parameters

	Returns

	the view results

	Return type

	ViewResults

	
revisions(id, **options)

	Return all available revisions of the given document.

	Parameters

	id – the document ID

	Returns

	an iterator over Document objects, each a different revision,
in reverse chronological order, if any were found

	
save(doc, **options)

	Create a new document or update an existing document.

If doc has no _id then the server will allocate a random ID and a new
document will be created. Otherwise the doc’s _id will be used to
identify the document to create or update. Trying to update an existing
document with an incorrect _rev will raise a ResourceConflict exception.

Note that it is generally better to avoid saving documents with no _id
and instead generate document IDs on the client side. This is due to
the fact that the underlying HTTP POST method is not idempotent,
and an automatic retry due to a problem somewhere on the networking
stack may cause multiple documents being created in the database.

To avoid such problems you can generate a UUID on the client side.
Python (since version 2.5) comes with a uuid module that can be
used for this:

from uuid import uuid4
doc = {'_id': uuid4().hex, 'type': 'person', 'name': 'John Doe'}
db.save(doc)

	Parameters

	
	doc – the document to store

	options – optional args, e.g. batch=’ok’

	Returns

	(id, rev) tuple of the save document

	Return type

	tuple

	
show(name, docid=None, **options)

	Call a ‘show’ function.

	Parameters

	
	name – the name of the show function in the format
designdoc/showname

	docid – optional ID of a document to pass to the show function.

	options – optional query string parameters

	Returns

	(headers, body) tuple, where headers is a dict of headers
returned from the show function and body is a readable
file-like instance

	
update(documents, **options)

	Perform a bulk update or insertion of the given documents using a
single HTTP request.

>>> server = Server()
>>> db = server.create('python-tests')
>>> for doc in db.update([
... Document(type='Person', name='John Doe'),
... Document(type='Person', name='Mary Jane'),
... Document(type='City', name='Gotham City')
...]):
... print(repr(doc))
(True, u'...', u'...')
(True, u'...', u'...')
(True, u'...', u'...')

>>> del server['python-tests']

The return value of this method is a list containing a tuple for every
element in the documents sequence. Each tuple is of the form
(success, docid, rev_or_exc), where success is a boolean
indicating whether the update succeeded, docid is the ID of the
document, and rev_or_exc is either the new document revision, or
an exception instance (e.g. ResourceConflict) if the update failed.

If an object in the documents list is not a dictionary, this method
looks for an items() method that can be used to convert the object
to a dictionary. Effectively this means you can also use this method
with mapping.Document objects.

	Parameters

	documents – a sequence of dictionaries or Document objects, or
objects providing a items() method that can be
used to convert them to a dictionary

	Returns

	an iterable over the resulting documents

	Return type

	list

	Since

	version 0.2

	
update_doc(name, docid=None, **options)

	Calls server side update handler.

	Parameters

	
	name – the name of the update handler function in the format
designdoc/updatename.

	docid – optional ID of a document to pass to the update handler.

	options – additional (optional) params to pass to the underlying
http resource handler, including headers, body,
and `path`. Other arguments will be treated as
query string params. See couchdb.http.Resource

	Returns

	(headers, body) tuple, where headers is a dict of headers
returned from the list function and body is a readable
file-like instance

	
view(name, wrapper=None, **options)

	Execute a predefined view.

>>> server = Server()
>>> db = server.create('python-tests')
>>> db['gotham'] = dict(type='City', name='Gotham City')

>>> for row in db.view('_all_docs'):
... print(row.id)
gotham

>>> del server['python-tests']

	Parameters

	
	name – the name of the view; for custom views, use the format
design_docid/viewname, that is, the document ID of the
design document and the name of the view, separated by a
slash

	wrapper – an optional callable that should be used to wrap the
result rows

	options – optional query string parameters

	Returns

	the view results

	Return type

	ViewResults

3.3. Document

	
class couchdb.client.Document

	Representation of a document in the database.

This is basically just a dictionary with the two additional properties
id and rev, which contain the document ID and revision, respectively.

	
id

	The document ID.

	Return type

	basestring

	
rev

	The document revision.

	Return type

	basestring

3.4. ViewResults

	
class couchdb.client.ViewResults(view, options)

	Representation of a parameterized view (either permanent or temporary)
and the results it produces.

This class allows the specification of key, startkey, and
endkey options using Python slice notation.

>>> server = Server()
>>> db = server.create('python-tests')
>>> db['johndoe'] = dict(type='Person', name='John Doe')
>>> db['maryjane'] = dict(type='Person', name='Mary Jane')
>>> db['gotham'] = dict(type='City', name='Gotham City')
>>> map_fun = '''function(doc) {
... emit([doc.type, doc.name], doc.name);
... }'''
>>> results = db.query(map_fun)

At this point, the view has not actually been accessed yet. It is accessed
as soon as it is iterated over, its length is requested, or one of its
rows, total_rows, or offset properties are accessed:

>>> len(results)
3

You can use slices to apply startkey and/or endkey options to the
view:

>>> people = results[['Person']:['Person','ZZZZ']]
>>> for person in people:
... print(person.value)
John Doe
Mary Jane
>>> people.total_rows, people.offset
(3, 1)

Use plain indexed notation (without a slice) to apply the key option.
Note that as CouchDB makes no claim that keys are unique in a view, this
can still return multiple rows:

>>> list(results[['City', 'Gotham City']])
[<Row id=u'gotham', key=[u'City', u'Gotham City'], value=u'Gotham City'>]

>>> del server['python-tests']

	
offset

	The offset of the results from the first row in the view.

This value is 0 for reduce views.

	Return type

	int

	
rows

	The list of rows returned by the view.

	Return type

	list

	
total_rows

	The total number of rows in this view.

This value is None for reduce views.

	Return type

	int or NoneType for reduce views

	
update_seq

	The database update sequence that the view reflects.

The update sequence is included in the view result only when it is
explicitly requested using the update_seq=true query option.
Otherwise, the value is None.

	Return type

	int or NoneType depending on the query options

3.5. Row

	
class couchdb.client.Row

	Representation of a row as returned by database views.

	
doc

	The associated document for the row. This is only present when the
view was accessed with include_docs=True as a query parameter,
otherwise this property will be None.

	
id

	The associated Document ID if it exists. Returns None when it
doesn’t (reduce results).

4. Mapping CouchDB documents to Python objects: couchdb.mapping

Mapping from raw JSON data structures to Python objects and vice versa.

>>> from couchdb import Server
>>> server = Server()
>>> db = server.create('python-tests')

To define a document mapping, you declare a Python class inherited from
Document, and add any number of Field attributes:

>>> from datetime import datetime
>>> from couchdb.mapping import Document, TextField, IntegerField, DateTimeField
>>> class Person(Document):
... name = TextField()
... age = IntegerField()
... added = DateTimeField(default=datetime.now)
>>> person = Person(name='John Doe', age=42)
>>> person.store(db)
<Person ...>
>>> person.age
42

You can then load the data from the CouchDB server through your Document
subclass, and conveniently access all attributes:

>>> person = Person.load(db, person.id)
>>> old_rev = person.rev
>>> person.name
u'John Doe'
>>> person.age
42
>>> person.added
datetime.datetime(...)

To update a document, simply set the attributes, and then call the store()
method:

>>> person.name = 'John R. Doe'
>>> person.store(db)
<Person ...>

If you retrieve the document from the server again, you should be getting the
updated data:

>>> person = Person.load(db, person.id)
>>> person.name
u'John R. Doe'
>>> person.rev != old_rev
True

>>> del server['python-tests']

4.1. Field types

	
class couchdb.mapping.TextField(name=None, default=None)

	Mapping field for string values.

	
class couchdb.mapping.FloatField(name=None, default=None)

	Mapping field for float values.

	
class couchdb.mapping.IntegerField(name=None, default=None)

	Mapping field for integer values.

	
class couchdb.mapping.LongField(name=None, default=None)

	Mapping field for long integer values.

	
class couchdb.mapping.BooleanField(name=None, default=None)

	Mapping field for boolean values.

	
class couchdb.mapping.DecimalField(name=None, default=None)

	Mapping field for decimal values.

	
class couchdb.mapping.DateField(name=None, default=None)

	Mapping field for storing dates.

>>> field = DateField()
>>> field._to_python('2007-04-01')
datetime.date(2007, 4, 1)
>>> field._to_json(date(2007, 4, 1))
'2007-04-01'
>>> field._to_json(datetime(2007, 4, 1, 15, 30))
'2007-04-01'

	
class couchdb.mapping.DateTimeField(name=None, default=None)

	Mapping field for storing date/time values.

>>> field = DateTimeField()
>>> field._to_python('2007-04-01T15:30:00Z')
datetime.datetime(2007, 4, 1, 15, 30)
>>> field._to_python('2007-04-01T15:30:00.009876Z')
datetime.datetime(2007, 4, 1, 15, 30, 0, 9876)
>>> field._to_json(datetime(2007, 4, 1, 15, 30, 0))
'2007-04-01T15:30:00Z'
>>> field._to_json(datetime(2007, 4, 1, 15, 30, 0, 9876))
'2007-04-01T15:30:00.009876Z'
>>> field._to_json(date(2007, 4, 1))
'2007-04-01T00:00:00Z'

	
class couchdb.mapping.DictField(mapping=None, name=None, default=None)

	Field type for nested dictionaries.

>>> from couchdb import Server
>>> server = Server()
>>> db = server.create('python-tests')

>>> class Post(Document):
... title = TextField()
... content = TextField()
... author = DictField(Mapping.build(
... name = TextField(),
... email = TextField()
...))
... extra = DictField()

>>> post = Post(
... title='Foo bar',
... author=dict(name='John Doe',
... email='john@doe.com'),
... extra=dict(foo='bar'),
...)
>>> post.store(db)
<Post ...>
>>> post = Post.load(db, post.id)
>>> post.author.name
u'John Doe'
>>> post.author.email
u'john@doe.com'
>>> post.extra
{u'foo': u'bar'}

>>> del server['python-tests']

	
class couchdb.mapping.ListField(field, name=None, default=None)

	Field type for sequences of other fields.

>>> from couchdb import Server
>>> server = Server()
>>> db = server.create('python-tests')

>>> class Post(Document):
... title = TextField()
... content = TextField()
... pubdate = DateTimeField(default=datetime.now)
... comments = ListField(DictField(Mapping.build(
... author = TextField(),
... content = TextField(),
... time = DateTimeField()
...)))

>>> post = Post(title='Foo bar')
>>> post.comments.append(author='myself', content='Bla bla',
... time=datetime.now())
>>> len(post.comments)
1
>>> post.store(db)
<Post ...>
>>> post = Post.load(db, post.id)
>>> comment = post.comments[0]
>>> comment['author']
u'myself'
>>> comment['content']
u'Bla bla'
>>> comment['time']
u'...T...Z'

>>> del server['python-tests']

	
class couchdb.mapping.ViewField(design, map_fun, reduce_fun=None, name=None, language='javascript', wrapper=<object object>, **defaults)

	Descriptor that can be used to bind a view definition to a property of
a Document class.

>>> class Person(Document):
... name = TextField()
... age = IntegerField()
... by_name = ViewField('people', '''\
... function(doc) {
... emit(doc.name, doc);
... }''')
>>> Person.by_name
<ViewDefinition '_design/people/_view/by_name'>

>>> print(Person.by_name.map_fun)
function(doc) {
 emit(doc.name, doc);
}

That property can be used as a function, which will execute the view.

>>> from couchdb import Database
>>> db = Database('python-tests')

>>> Person.by_name(db, count=3)
<ViewResults <PermanentView '_design/people/_view/by_name'> {'count': 3}>

The results produced by the view are automatically wrapped in the
Document subclass the descriptor is bound to. In this example, it would
return instances of the Person class. But please note that this requires
the values of the view results to be dictionaries that can be mapped to the
mapping defined by the containing Document class. Alternatively, the
include_docs query option can be used to inline the actual documents in
the view results, which will then be used instead of the values.

If you use Python view functions, this class can also be used as a
decorator:

>>> class Person(Document):
... name = TextField()
... age = IntegerField()
...
... @ViewField.define('people')
... def by_name(doc):
... yield doc['name'], doc

>>> Person.by_name
<ViewDefinition '_design/people/_view/by_name'>

>>> print(Person.by_name.map_fun)
def by_name(doc):
 yield doc['name'], doc

5. Changes

5.1. Version 1.2 (2018-02-09)

	Fixed some issues relating to usage with Python 3

	Remove support for Python 2.6 and 3.x with x < 4

	Fix logging response in query server (fixes #321)

	Fix HTTP authentication password encoding (fixes #302)

	Add missing http.Forbidden error (fixes #305)

	Show doc property on Row string representation

	Add methods for mango queries and indexes

	Allow mango filters in _changes API

5.2. Version 1.1 (2016-08-05)

	Add script to load design documents from disk

	Add methods on Server for user/session management

	Add microseconds support for DateTimeFields

	Handle changes feed as emitted by CouchBase (fixes #289)

	Support Python 3 in couchdb-dump script (fixes #296)

	Expand relative URLs from Location headers (fixes #287)

	Correctly handle _rev fields in mapped documents (fixes #278)

5.3. Version 1.0.1 (2016-03-12)

	Make sure connections are correctly closed on GAE (fixes #224)

	Correctly join path parts in replicate script (fixes #269)

	Fix id and rev for some special documents

	Make it possible to disable SSL verification

5.4. Version 1.0 (2014-11-16)

	Many smaller Python 3 compatibility issues have been fixed

	Improve handling of binary attachments in the couchdb-dump tool

	Added testing via tox and support for Travis CI

5.5. Version 0.10 (2014-07-15)

	Now compatible with Python 2.7, 3.3 and 3.4

	Added batch processing for the couchdb-dump tool

	A very basic API to access the _security object

	A way to access the update_seq value on view results

5.6. Version 0.9 (2013-04-25)

	Don’t validate database names on the client side. This means some methods
dealing with database names can return different exceptions than before.

	Use HTTP socket more efficiently to avoid the Nagle algorithm, greatly
improving performace. Note: add the {nodelay, true} option to the CouchDB
server’s httpd/socket_options config.

	Add support for show and list functions.

	Add support for calling update handlers.

	Add support for purging documents.

	Add iterview() for more efficient iteration over large view results.

	Add view cleanup API.

	Enhance Server.stats() to optionally retrieve a single set of statistics.

	Implement Session timeouts.

	Add error property to Row objects.

	Add default=None arg to mapping.Document.get() to make it a little more
dict-like.

	Enhance Database.info() so it can also be used to get info for a design
doc.

	Add view definition options, e.g. collation.

	Fix support for authentication in dump/load tools.

	Support non-ASCII document IDs in serialization format.

	Protect ResponseBody from being iterated/closed multiple times.

	Rename iteration method for ResponseBody chunks to iterchunks() to
prevent usage for non-chunked responses.

	JSON encoding exceptions are no longer masked, resulting in better error
messages.

	cjson support is now deprecated.

	Fix Row.value and Row.__repr__ to never raise exceptions.

	Fix Python view server’s reduce to handle empty map results list.

	Use locale-independent timestamp identifiers for HTTP cache.

	Don’t require setuptools/distribute to install the core package. (Still
needed to install the console scripts.)

5.7. Version 0.8 (Aug 13, 2010)

	The couchdb-replicate script has changed from being a poor man’s version of
continuous replication (predating it) to being a simple script to help
kick off replication jobs across databases and servers.

	Reinclude all http exception types in the ‘couchdb’ package’s scope.

	Replaced epydoc API docs by more extensive Sphinx-based documentation.

	Request retries schedule and frequency are now customizable.

	Allow more kinds of request errors to trigger a retry.

	Improve wrapping of view results.

	Added a uuids() method to the client.Server class (issue 122).

	Tested with CouchDB 0.10 - 1.0 (and Python 2.4 - 2.7).

5.8. Version 0.7.0 (Apr 15, 2010)

	Breaking change: the dependency on httplib2 has been replaced by
an internal couchdb.http library. This changes the API in several places.
Most importantly, resource.request() now returns a 3-member tuple.

	Breaking change: couchdb.schema has been renamed to couchdb.mapping.
This better reflects what is actually provided. Classes inside
couchdb.mapping have been similarly renamed (e.g. Schema -> Mapping).

	Breaking change: couchdb.schema.View has been renamed to
couchdb.mapping.ViewField, in order to help distinguish it from
couchdb.client.View.

	Breaking change: the client.Server properties version and config
have become methods in order to improve API consistency.

	Prevent schema.ListField objects from sharing the same default (issue 107).

	Added a changes() method to the client.Database class (issue 103).

	Added an optional argument to the ‘Database.compact`` method to enable
view compaction (the rest of issue 37).

5.9. Version 0.6.1 (Dec 14, 2009)

	Compatible with CouchDB 0.9.x and 0.10.x.

	Removed debugging statement from json module (issue 82).

	Fixed a few bugs resulting from typos.

	Added a replicate() method to the client.Server class (issue 61).

	Honor the boundary argument in the dump script code (issue 100).

	Added a stats() method to the client.Server class.

	Added a tasks() method to the client.Server class.

	Allow slashes in path components passed to the uri function (issue 96).

	schema.DictField objects now have a separate backing dictionary for each
instance of their schema.Document (issue 101).

	schema.ListField proxy objects now have a more consistent (though somewhat
slower) count() method (issue 91).

	schema.ListField objects now have correct behavior for slicing operations
and the pop() method (issue 92).

	Added a revisions() method to the Database class (issue 99).

	Make sure we always return UTF-8 from the view server (issue 81).

5.10. Version 0.6 (Jul 2, 2009)

	Compatible with CouchDB 0.9.x.

	schema.DictField instances no longer need to be bound to a Schema
(issue 51).

	Added a config property to the client.Server class (issue 67).

	Added a compact() method to the client.Database class (issue 37).

	Changed the update() method of the client.Database class to simplify
the handling of errors. The method now returns a list of (success, docid,
rev_or_exc) tuples. See the docstring of that method for the details.

	schema.ListField proxy objects now support the __contains__() and
index() methods (issue 77).

	The results of the query() and view() methods in the schema.Document
class are now properly wrapped in objects of the class if the include_docs
option is set (issue 76).

	Removed the eager option on the query() and view() methods of
schema.Document. Use the include_docs option instead, which doesn’t
require an additional request per document.

	Added a copy() method to the client.Database class, which translates to
a HTTP COPY request (issue 74).

	Accessing a non-existing database through Server.__getitem__ now throws
a ResourceNotFound exception as advertised (issue 41).

	Added a delete() method to the client.Server class for consistency
(issue 64).

	The couchdb-dump tool now operates in a streaming fashion, writing one
document at a time to the resulting MIME multipart file (issue 58).

	It is now possible to explicitly set the JSON module that should be used
for decoding/encoding JSON data. The currently available choices are
simplejson, cjson, and json (the standard library module). It is also
possible to use custom decoding/encoding functions.

	Add logging to the Python view server. It can now be configured to log to a
given file or the standard error stream, and the log level can be set debug
to see all communication between CouchDB and the view server (issue 55).

5.11. Version 0.5 (Nov 29, 2008)

	schema.Document objects can now be used in the documents list passed to
client.Database.update().

	Server.__contains__() and Database.__contains__() now use the HTTP HEAD
method to avoid unnecessary transmission of data. Database.__del__() also
uses HEAD to determine the latest revision of the document.

	The Database class now has a method delete() that takes a document
dictionary as parameter. This method should be used in preference to
__del__ as it allow conflict detection and handling.

	Added cache and timeout arguments to the client.Server initializer.

	The Database class now provides methods for deleting, retrieving, and
updating attachments.

	The Python view server now exposes a log() function to map and reduce
functions (issue 21).

	Handling of the rereduce stage in the Python view server has been fixed.

	The Server and Database classes now implement the __nonzero__ hook
so that they produce sensible results in boolean conditions.

	The client module will now reattempt a request that failed with a
“connection reset by peer” error.

	inf/nan values now raise a ValueError on the client side instead of
triggering an internal server error (issue 31).

	Added a new couchdb.design module that provides functionality for
managing views in design documents, so that they can be defined in the
Python application code, and the design documents actually stored in the
database can be kept in sync with the definitions in the code.

	The include_docs option for CouchDB views is now supported by the new
doc property of row instances in view results. Thanks to Paul Davis for
the patch (issue 33).

	The keys option for views is now supported (issue 35).

5.12. Version 0.4 (Jun 28, 2008)

	Updated for compatibility with CouchDB 0.8.0

	Added command-line scripts for importing/exporting databases.

	The Database.update() function will now actually perform the POST
request even when you do not iterate over the results (issue 5).

	The _view prefix can now be omitted when specifying view names.

5.13. Version 0.3 (Feb 6, 2008)

	The schema.Document class now has a view() method that can be used to
execute a CouchDB view and map the result rows back to objects of that
schema.

	The test suite now uses the new default port of CouchDB, 5984.

	Views now return proxy objects to which you can apply slice syntax for
“key”, “startkey”, and “endkey” filtering.

	Add a query() classmethod to the Document class.

5.14. Version 0.2 (Nov 21, 2007)

	Added __len__ and __iter__ to the schema.Schema class to iterate
over and get the number of items in a document or compound field.

	The “version” property of client.Server now returns a plain string
instead of a tuple of ints.

	The client library now identifies itself with a meaningful
User-Agent string.

	schema.Document.store() now returns the document object instance,
instead of just the document ID.

	The string representation of schema.Document objects is now more
comprehensive.

	Only the view parameters “key”, “startkey”, and “endkey” are JSON
encoded, anything else is left alone.

	Slashes in document IDs are now URL-quoted until CouchDB supports
them.

	Allow the content-type to be passed for temp views via
client.Database.query() so that view languages other than
Javascript can be used.

	Added client.Database.update() method to bulk insert/update
documents in a database.

	The view-server script wrapper has been renamed to couchpy.

	couchpy now supports --help and --version options.

	Updated for compatibility with CouchDB release 0.7.0.

5.15. Version 0.1 (Sep 23, 2007)

	First public release.

 Python Module Index

 c

 		 	

 		
 c	

 	[image: -]
 	
 couchdb	

 	
 	
 couchdb.client	

 	
 	
 couchdb.mapping	

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | I
 | L
 | N
 | O
 | P
 | Q
 | R
 | S
 | T
 | U
 | V

A

 	
 	add_user() (couchdb.client.Server method)

B

 	
 	BooleanField (class in couchdb.mapping)

C

 	
 	changes() (couchdb.client.Database method)

 	cleanup() (couchdb.client.Database method)

 	commit() (couchdb.client.Database method)

 	compact() (couchdb.client.Database method)

 	config() (couchdb.client.Server method)

 	
 	copy() (couchdb.client.Database method)

 	couchdb.client (module)

 	couchdb.mapping (module)

 	create() (couchdb.client.Database method)

 	(couchdb.client.Server method)

D

 	
 	Database (class in couchdb.client)

 	DateField (class in couchdb.mapping)

 	DateTimeField (class in couchdb.mapping)

 	DecimalField (class in couchdb.mapping)

 	delete() (couchdb.client.Database method)

 	(couchdb.client.Server method)

 	
 	delete_attachment() (couchdb.client.Database method)

 	DictField (class in couchdb.mapping)

 	doc (couchdb.client.Row attribute)

 	Document (class in couchdb.client)

E

 	
 	explain() (couchdb.client.Database method)

F

 	
 	find() (couchdb.client.Database method)

 	
 	FloatField (class in couchdb.mapping)

G

 	
 	get() (couchdb.client.Database method)

 	
 	get_attachment() (couchdb.client.Database method)

I

 	
 	id (couchdb.client.Document attribute)

 	(couchdb.client.Row attribute)

 	index() (couchdb.client.Database method)

 	
 	info() (couchdb.client.Database method)

 	IntegerField (class in couchdb.mapping)

 	iterview() (couchdb.client.Database method)

L

 	
 	list() (couchdb.client.Database method)

 	ListField (class in couchdb.mapping)

 	
 	login() (couchdb.client.Server method)

 	logout() (couchdb.client.Server method)

 	LongField (class in couchdb.mapping)

N

 	
 	name (couchdb.client.Database attribute)

O

 	
 	offset (couchdb.client.ViewResults attribute)

P

 	
 	purge() (couchdb.client.Database method)

 	
 	put_attachment() (couchdb.client.Database method)

Q

 	
 	query() (couchdb.client.Database method)

R

 	
 	remove_user() (couchdb.client.Server method)

 	replicate() (couchdb.client.Server method)

 	rev (couchdb.client.Document attribute)

 	
 	revisions() (couchdb.client.Database method)

 	Row (class in couchdb.client)

 	rows (couchdb.client.ViewResults attribute)

S

 	
 	save() (couchdb.client.Database method)

 	Server (class in couchdb.client)

 	
 	show() (couchdb.client.Database method)

 	stats() (couchdb.client.Server method)

T

 	
 	tasks() (couchdb.client.Server method)

 	
 	TextField (class in couchdb.mapping)

 	total_rows (couchdb.client.ViewResults attribute)

U

 	
 	update() (couchdb.client.Database method)

 	update_doc() (couchdb.client.Database method)

 	
 	update_seq (couchdb.client.ViewResults attribute)

 	uuids() (couchdb.client.Server method)

V

 	
 	verify_token() (couchdb.client.Server method)

 	version() (couchdb.client.Server method)

 	version_info() (couchdb.client.Server method)

 	
 	view() (couchdb.client.Database method)

 	ViewField (class in couchdb.mapping)

 	ViewResults (class in couchdb.client)

 _static/up-pressed.png

nav.xhtml

 Table of Contents

 		
 Introduction

 		
 Getting started with couchdb-python

 		
 Writing views in Python

 		
 Basic CouchDB API: couchdb.client

 		
 Server

 		
 Database

 		
 Document

 		
 ViewResults

 		
 Row

 		
 Mapping CouchDB documents to Python objects: couchdb.mapping

 		
 Field types

 		
 Changes

 		
 Version 1.2 (2018-02-09)

 		
 Version 1.1 (2016-08-05)

 		
 Version 1.0.1 (2016-03-12)

 		
 Version 1.0 (2014-11-16)

 		
 Version 0.10 (2014-07-15)

 		
 Version 0.9 (2013-04-25)

 		
 Version 0.8 (Aug 13, 2010)

 		
 Version 0.7.0 (Apr 15, 2010)

 		
 Version 0.6.1 (Dec 14, 2009)

 		
 Version 0.6 (Jul 2, 2009)

 		
 Version 0.5 (Nov 29, 2008)

 		
 Version 0.4 (Jun 28, 2008)

 		
 Version 0.3 (Feb 6, 2008)

 		
 Version 0.2 (Nov 21, 2007)

 		
 Version 0.1 (Sep 23, 2007)

_static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/up.png

_static/comment-close.png

_static/file.png

_static/minus.png

_static/down.png

_static/plus.png

_static/ajax-loader.gif

